Pontifícia Universidade Católica do Rio de Janeiro

Pedro de Carvalho Thá

Estudo das Condições de Fluxo pela Barragem de Terra da Margem Esquerda de Itaipu

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de mestre em Engenharia Civil.

> Orientador: Tácio Mauro P. de Campos Co-Orientador: Luiz Alkimin de Lacerda

> > Rio de Janeiro Agosto de 2007

Pontifícia Universidade Católica do Rio de Janeiro

Pedro de Carvalho Thá

Estudo das Condições de Fluxo pela Barragem de Terra da Margem Esquerda de Itaipu

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Tácio Mauro P. de CamposPresidente
Departamento de Engenharia Civil - PUC-Rio

Luiz Alkimin de Lacerda Lactec/UFPR

> Pedricto Rocha Filho PUC-Rio

Fernando Saboya A. Júnior UENF

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 24 de agosto de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Pedro de Carvalho Thá

Graduou-se em Engenharia Civil, pela Universidade Federal do Paraná, em 2004. Durante a graduação fez parte do programa PET-Civil por um ano e durante três anos foi estagiário do laboratório de geotecnia do Lactec. Desde julho de 2006 é engenheiro da Itaipu Binacional, onde atua na área de segurança de barragens.

Ficha Catalográfica

Thá, Pedro de Carvalho Thá

Estudo das condições de fluxo pela barragem de terra da margem esquerda de Itaipu / Pedro de Carvalho Thá; orientador: Tácio Mauro P. de Campos; co-orientador: Luiz Alkimin de Lacerda. - 2007.

99 f.: il.; 30 cm

Dissertação (Mestrado em Engenharia Civil)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia.

1. Engenharia civil – Teses. 2. Barragens. 3. Fluxo. 4. Itaipu. I. Campos, Tácio Mauro P. de. II. Lacerda, Luiz Alkimin de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

À minha mãe e irmãos, pelo amor e confiança em mim depositados.

Agradecimentos

Ao meu orientador Tácio, pelo apoio em minha vinda à Itaipu.

Ao meu co-orientador Alkimin, sempre disposto a ajudar.

Aos meus amigos e companheiros de trabalho da Itaipu, Evangelista, Porchertto, Osako, Monges e Miguel, que sempre se mostraram interessados e dispostos a ajudar. E em especial, ao Fiorini, que participou da elaboração deste trabalho, ajudando tanto na parte técnica quanto dando todas as condições para que pudesse concluí-lo.

Aos meus amigos Leonardo, João, Johan, Julio, Marcelo, Thaís e demais colegas do mestrado, pela convivência.

À CAPES pelo apoio financeiro.

À minha mãe, Rosana, meus irmãos Victor e Fernanda e à minha família, pelo apoio incondicional.

Resumo

Thá, Pedro de Carvalho; de Campos, Tácio Mauro P.; de Lacerda, Luiz Alkimin. Estudo das Condições de Fluxo pela Barragem de Terra da Margem Esquerda de Itaipu. Rio de Janeiro, 2007. 118p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A barragem de Itaipu consiste em uma série de estruturas cujo comprimento total é de 7744 m. Uma dessas estruturas é a Barragem de Terra da Margem Esquerda (BTME), cuja extensão é de 1989 m. A BTME está fundada diretamente sobre o solo do local, que consiste em um perfil de intemperismo de basalto, indo desde argila, na superfície, à rocha sã. Seu comportamento é monitorado por 9 piezômetros elétricos, 26 piezômetros standpipe, 12 medidores de nível d'água e seis medidores de vazão. Os medidores de vazão foram inicialmente projetados para medir a água de percolação pelo corpo da barragem. Para tanto, a barragem dispõe de um sistema de canaletas para coletar a água que sai dos filtros internos e conduzi-la aos medidores. Contudo, só ocorre saída de água pelos filtros em pequenos trechos da barragem e não se tinha conhecimento da origem das águas medidas, pois ao longo da operação da usina, alterações foram feitas para drenar áreas alagadas e a água de drenagem foi conduzida ao sistema de canaletas. O objetivo desta dissertação é identificar a origem das águas medidas pelos medidores de vazão e entender como se dá o fluxo pela fundação e corpo da barragem de terra da margem esquerda. Para tanto, utilizou-se um modelo em elementos finitos, com o programa SEEP/W, para oito seções instrumentadas da barragem e procedeu-se correlações estatísticas entre todos os instrumentos da BTME. A principal conclusão obtida foi de que os medidores de vazão medem primordialmente água do reservatório que infiltra pelas fundações e que apenas uma parcela da água infiltrada é medida.

Palavras-chave

Barragens, Fluxo, Itaipu.

Abstract

Thá, Pedro de Carvalho; de Campos, Tácio Mauro P.; de Lacerda, Luiz Alkimin. Study of Seepage Conditions through Itaipu Left Bank Earthfill Dam. Rio de Janeiro, 2007. 118p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The Itaipu dam consists of a series of different structures with a total length of 7744m. One of these structures is the Left Bank Earthfill Dam (LBED), whose length is 1989m. The LBED is founded directly in the local soil, which consists of a residual soil of basalt. The behaviour of the earthdam is monitored by 9 electric piezometers, 26 standpipe piezometers, 12 water level indicators and 6 flow meters. The flow meters were initially designed to measure the seepage through the dam body. For this purpose, the dam has a system of ditches to collect the water from the internal filters and to lead the water until a flow meter. However, there is water leaving the internal filters just in a little portion of the dam. In addition, there was no knowledge of the origin of the water that is measured in the flow meters, because many alterations were made in the operation of the dam to drain flooded areas. The drained water was conducted to the system of ditches. This work aims to identify the origin of the water measured in the flow meters and understand the seepage through the dam and its foundation. For this purpose a Finite Element Method analysis for eight instrumented sections was performed using the SEEP/W program. In addition, statistical correlations between data from all instrumentation of the LBED and rainfall were made. The main conclusion is that most of the water measured in the flow meters comes from the reservoir through the foundation. And only a little amount of the total seepage through the foundation is measured.

Keywords

Dams, Seepage, Itaipu.

Sumário

LISTA DE FIGURAS	10
LISTA DE TABELAS	13
LISTA DE FOTOS	14
LISTA DE ABREVIATURAS	15
1 INTRODUÇÃO	16
2 A BARRAGEM DE TERRA DA MARGEM ESQUERDA D	E ITAIPU20
3 ASPECTOS GEOLÓGICOS E GEOTÉCNICOS	25
3.1. CARACTERÍSTICAS GERAIS	25
3.2. Solo Residual	27
3.2.1. Argila Vermelha	28
3.2.2. Silte Argiloso Amarelo	29
3.2.3. Solo Saprolítico	29
3.3. MACIÇO ROCHOSO	30
4 INSTRUMENTAÇÃO	32
4.1. Piezômetros	32
4.1.1. Piezômetro Standpipe	32
4.1.2. Piezômetro Elétrico de Corda Vibrante	35
4.1.3. Cotas Piezométricas	36
4.2. MEDIDOR DE NÍVEL DE ÁGUA	38
4.3. MEDIDOR DE VAZÃO	40
4.3.1. Medidor de Vazão de Placa Triangular	40
4.3.2. Tubos de Drenagem	44
4.4. LOCALIZAÇÃO DOS INSTRUMENTOS	45
5 MODELO EM ELEMENTOS FINITOS	48
5.1. MODELAGEM DAS SEÇÕES INSTRUMENTADAS	48
5.2. CÁLCULO DAS VAZÕES PELA BARRAGEM	55
5.3. MODELAGEM DA SEÇÃO DA ESTACA 133 + 50	56

6 ANÁLISE ESTATÍSTICA	60
6.1. Introdução	.60
6.2. Aspectos Teóricos	61
6.2.1. Correlação Linear	61
6.2.2. Coeficiente de Correlação Linear	62
6.2.3. Coeficiente de Correlação Linear Amostral	63
6.3. RESULTADOS DAS CORRELAÇÕES	64
6.4. AVALIAÇÃO DA INFLUÊNCIA DA CHUVA NAS VAZÕES DOS MEDIDORES	81
7 ANÁLISE DOS RESULTADOS E CONCLUSÕES	86
7.1. Análise dos Resultados	.86
7.1.1. MVL1	.86
7.1.2. MVL2	86
7.1.3. MVL3	89
7.1.4. MVL 4 e MVL5	90
7.1.5. MVL6	91
7.2. CONCLUSÕES	.92
REFERÊNCIAS	96
ANIEWOC	00

Lista de figuras

Figura 1 – Aspecto geral da Barragem de Itaipu	17
Figura 2– Níveis do reservatório	18
Figura 3 – Seções Típicas da BTME	21
Figura 4 – Perfil Geológico na Área da Barragem de Itaipu	26
Figura 5 – Perfil Típico de Solo na Região da Barragem de Itaipu	27
Figura 6 – Piezômetro Standpipe	33
Figura 7- PSL10	34
Figura 8– PSL21	35
Figura 9 – Piezômetro de Corda Vibrante	36
Figura 10– PGL01	36
Figura 11 – Curvas de mesma Cota Piezométrica para os piezômetros	s instalados
na argila	37
Figura 12 – Curvas de mesma Cota Piezométrica para os piezômetros	s instalados
no solo saprolítico	38
Figura 13 – Medidor de Nível de Água (PZL8)	39
Figura 14– Nível do PZL07	39
Figura 15– Superfície Freática a jusante	40
Figura 16 – Geometria de Medidor de Placa Triangular	42
Figura 17 – Vazões no Medidor de Vazão de placa Triangular com vé	rtice de 90°
para as formulações de Thompson e Gouley e Crimp	42
Figura 18 – Vazões medidas manualmente no MVL1	43
Figura 19 – Vazões medidas manualmente no MVL2	43
Figura 20 – Vazões medidas manualmente no MVL3	44
Figura 21 – Vazões medidas manualmente no MVL4	44
Figura 22 – Vazões do MVL5	45
Figura 23 – Vazões do MVL6	45
Figura 24 – Modelagem da Seção da Estaca 138 + 50	49
Figura 25 – Seção na estaca 123 + 50	50
Figura 26 – Seção na estaca 124 + 50	51
Figura 27 – Seção na estaca 125 + 50	51
Figura 28 – Seção na estaça 127 + 30	51

Figura 29 – Seção na estaca 129 + 505
Figura 30 – Seção na estaca 132 + 005
Figura 31 – Seção na estaca 135 + 505
Figura 32 – Seção na estaca 138 + 50
Figura 33 - Seção com a freática na estaca 133 + 50 para a camada permeáve
no contato argila solo saprolítico57
Figura 34 - Seção com a freática na estaca 133 + 50 para a camada permeáve
no solo saprolítico57
Figura 35 - Perda de carga ao longo da seção da estaca 123 + 50 no solo
saprolítico60
Figura 36 - Perda de carga ao longo da seção da estaca 123 + 50 na argila
vermelha6 ²
Figura 37 – Correlação Linear Positiva62
Figura 38 – Correlação Linear Negativa62
Figura 39 – Localização dos piezômetros do solo saprolítico69
Figura 40 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros do solo saprolítico e reservatório70
Figura 41 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros do solo saprolítico e MVL170
Figura 42 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros do solo saprolítico e MVL270
Figura 43 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros do solo saprolítico e MVL37
Figura 44 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros do solo saprolítico e MVL47
Figura 45 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros do solo saprolítico e MVL572
Figura 46 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros do solo saprolítico e MVL672
Figura 47 – Localização dos Piezômetros da argila
Figura 48 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros da argila e reservatório73
Figura 49 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros da argila e MVL174
Figura 50 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros da argila e MVL274

Figura 51 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros da argila e MVL375
Figura 52 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros da argila e MVL475
Figura 53 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros da argila e MVL576
Figura 54 - Curvas de mesmo coeficiente de correlação linear amostral entre
piezômetros da argila e MVL676
Figura 55 – Localização dos medidores de nível de água77
Figura 56 - Curvas de mesmo coeficiente de correlação linear amostral entre
medidores77
Figura 57 - Curvas de mesmo coeficiente de correlação amostral entre
medidores de nível de água e MVL178
Figura 58 - Curvas de mesmo coeficiente de correlação linear amostral entre
medidores de nível de água e MVL278
Figura 59 - Curvas de mesmo coeficiente de correlação linear amostral entre
medidores de nível de água e MVL379
Figura 60 - Curvas de mesmo coeficiente de correlação linear amostral entre
medidores de nível de água e MVL 479
Figura 61 - Curvas de mesmo coeficiente de correlação linear amostral entre
medidores de nível de água e MVL580
Figura 62 - Curvas de mesmo coeficiente de correlação linear amostral entre
medidores de nível de água e MVL680
Figura 63 – Vazão no MVL2 e Precipitação Acumulada no dia 19/11/2006 83
Figura 64 – Variação da vazão em função da precipitação para o MVL183
Figura 65 – Variação de vazão em função da precipitação para o MVL284
Figura 66 – Variação de vazão em função da precipitação para o MVL384
Figura 67 – Vazões no MVL2 e Nível do Reservatório88
Figura 68 – Medidas do PZL1 e PZL889
Figura 69- Vazão no MVL6 e Precipitação no PV291

Lista de tabelas

Tabela 1 - Características da Argila Vermelha28
Tabela 2 Características do Silte Argiloso29
Tabela 3 - Características do Solo Saprolítico
Tabela 4 – Piezômetros Standpipe por feição34
Tabela 5 – Permeabilidades Iniciais Utilizadas no Modelo50
Tabela 6 – Permeabilidades Ajustadas pelo Modelo
Tabela 7 Diferenças entre Cargas Totais de Campo e do Modelo53
Tabela 8 - Cotas piezométricas em função da consideração ou não de camada
de rocha alterada54
Tabela 9 – Vazão em cada seção do modelo54
Tabela 10 - Vazões Teóricas55
Tabela 11 – Vazões na estaca 133 + 50
Tabela 12– Coeficientes <i>r</i> para os medidores de vazão65
Tabela 13 - Coeficiente de Correlação Amostral entre MVL2 e nível médio do
reservatório em função dos dias de atraso65
Tabela 14 – Coeficientes de Correlação Amostral entre piezômetros e medidores
de nível de água com nível do reservatório e medidores de vazão 68
Tabela 15 - Coeficiente de Correlação Amostral entre PGL1 e nível do
reservatório em função dos dias de atraso68
Tabela 16 - Valores de vazão e precipitação utilizados para avaliar a influência
da chuva no MVL2 no dia 19/11/200682

Lista de fotos

Foto 1 – Canaleta de drenagem próximo à ombreira esquerda	19
Foto 2 – MVL2	22
Foto 3 – MVL3	23
Foto 4 – MVL1 e MVL4	23
Foto 5 – MVL5	23
Foto 6 – MVL6	24
Foto 7- Medidor de Vazão de Placa Triangular	41
Foto 8 – Drenos na parede da canaleta que conduz a água ao MVL3	90
Foto 9 – Canaleta na estaca 128 + 80	93
Foto 10 – Caixa de passagem da estaca 122 + 00	94

Lista de abreviaturas

k : Coeficiente de Permeabilidade

I : Litros
m : Metro
min : Minuto

m.s.n.m : Metros sobre o nível do mar

s : Segundos